p-ADIC VALUATIONS OF SOME SUMS OF MULTINOMIAL COEFFICIENTS

نویسندگان

  • Zhi-Wei Sun
  • ZHI-WEI SUN
چکیده

Let m and n > 0 be integers. Suppose that p is an odd prime dividing m− 4. We show that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valuations and Combinatorics of Truncated Exponential Sums

A conjecture of G. McGarvey for the 2-adic valuation of the Schenker sums is established. These sums are n! times the sum of the first n+1 terms of the series for e. A certain analytic expression for the p-adic valuation of these sums is provided for a class of primes. Some combinatorial interpretations (using rooted trees) are furnished for identities that arose along the way.

متن کامل

COMPLETE SUM OF PRODUCTS OF (h,q)-EXTENSION OF EULER POLYNOMIALS AND NUMBERS

By using the fermionic p-adic q-Volkenborn integral, we construct generating functions of higher-order (h, q)-extension of Euler polynomials and numbers. By using these numbers and polynomials, we give new approach to the complete sums of products of (h, q)-extension of Euler polynomials and numbers one of which is given by the following form: are the multinomial coefficients and E (h) m,q (y) ...

متن کامل

A Congruential Identity and the 2-adic Order of Lacunary Sums of Binomial Coefficients

In this paper we obtain a universal lower bound on the 2-adic order of lacunary sums of binomial coefficients. By means of necessary and sufficient conditions, we determine the set of values for which the bound is achieved and show the periodicity of the set. We prove a congruential identity for the corresponding generating function. Our approach gives an alternative and transparent proof for s...

متن کامل

HODGE-STICKELBERGER POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS OF P (x)

Let Fq be a finite field of cardinality q and characteristic p. Let P (x) be any one-variable Laurent polynomial over Fq of degree (d1, d2) respectively and p d1d2. For any fixed s ≥ 1 coprime to p, we prove that the q-adic Newton polygon of the L-functions of exponential sums of P (xs) has a tight lower bound which we call HodgeStickelberger polygon, depending only on the d1, d2, s and the res...

متن کامل

A matrix generalization of a theorem of Fine

, for m in the range 0 ≤ m ≤ n, that are not divisible by p. We give a matrix product that generalizes Fine’s formula, simultaneously counting binomial coefficients with p-adic valuation α for each α ≥ 0. For each n this information is naturally encoded in a polynomial generating function, and the sequence of these polynomials is p-regular in the sense of Allouche and Shallit. We also give a fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010